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Abstract—Demands for wide-area connectivity between enter-
prise site-edge networks and central office core networks/cloud
data centers have grown rapidly. Various software defined wide
area network (SD-WAN) solutions have been developed with the
primary aim of improving WAN link utilization. However, mech-
anisms used by existing SD-WAN solutions fail to provide high
reliability and performance required by today’s edge to cloud
applications. In this article, we present WAN-aware MPTCP
which seamlessly aggregates multiple WAN links into a ‘big
pipe” for better WAN resilience thus minimizing application
performance degradation under WAN link failures. We lever-
age the congestion control of MPTCP to balance traffic across
multiple WAN links. The key innovation is to combine LAN vir-
tualization at end systems with WAN virtualization at SD-WAN
gateways. Through evaluation in both emulated testbeds and
real-world deployment, we demonstrate the performance gain
of WAN-aware MPTCP in terms of resilience and throughput
over existing SD-WAN solutions.

Index Terms—Software defined networks, wide area networks,
edge networks.

I. INTRODUCTION

ANY modern enterprises are geographically dispersed
M across multiple sites over a wide area network (WAN).
Typically, branch office site networks are connected to a cen-
tral office core network or a core data center (private cloud)
via “dedicated” WAN links provisioned by one or more ser-
vice providers. For security and privacy, WAN gateways at
each site route enterprise traffic over VPN tunnels connect-
ing edge networks with core/cloud networks. However, WAN
link failures happen more frequently than expected [50]. Even
with a dedicated WAN, dealing with WAN failures is a key
consideration in Google’s B4&after systems [24], [26]. With
increasing complexity in WAN (e.g., WAN managed by differ-
ent ISPs; emerging 5G links adopted in WAN), such failures
are likely to occur more frequently than before. More impor-
tantly, WAN failures have a significant impact on enterprises,
and thus dealing with them is a major practical challenge.
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Compared to local area networks (LAN), WAN connec-
tivity has become prohibitively expensive to meet the grow-
ing demands required by applications. This has led to a
shift towards novel WAN solutions using software-defined
networking (SDN) to better manage bandwidth intensive traffic
traversing private WANSs and increase the utilization of expen-
sive WAN links. SD-WAN solutions [12] allow multiple WAN
links to be logically combined for higher capacity. When WAN
link failures are detected, traffic is re-distributed from failed
links to other available links for resilience.

In this article, we present a novel scalable SD-WAN solu-
tion, WAN-aware MPTCP (WaMPTCP), which not only can
seamlessly aggregate multiple (heterogeneous) WAN paths
into a “big pipe”, but is also capable of adapting to network
failures or congestion to provide fast failure recovery to appli-
cations. The goal is to decrease the impact of WAN failures
and bottlenecks on each client application by allowing it to
take maximum advantage of the diversity of WAN paths pro-
vided by the SDN gateway. It is achieved by fusing WAN
virtualization with an innovative LAN virtualization idea: we
recognized that many OSs in end systems such as servers,
desktops, laptops and mobile devices have built-in support for
MPTCP; thus we utilize this fact by creating multiple virtual
interfaces at an end system and enabling applications on the
end system to create multiple MPTCP sub-flows, even though
the physical interface of the end system may be attached to a
single LAN that is connected to a SDN gateway with multiple
WAN links. A combination of LAN virtualization and DHCP
solves the challenge of making MPTCP on the end systems
generate a number of subflows equal to the number of WAN
paths at the gateway. LAN virtualization also solves the chal-
lenge of distributing and mapping those MPTCP subflows to
WAN paths evenly and scalably: the gateway does not need to
maintain flow-level state or perform MPTCP subflow asso-
ciation [57], but only rely on a few simple subnet routes.
The gateway leverages MPTCP running on the end systems
to achieve load balancing and congestion control across the
MPTCP subflows and the WAN paths. By dividing a single
application flow into multiple MPTCP subflows, WaMPTCP
ensures that the application is not turned down when a WAN
link is highly congested or fails, as such congestion or failure
only affects a small portion of MPTCP subflows. WaMPTCP
employs a fast recovery mechanism at gateways to distribute
affected MPTCP subflows to other available WAN links to
minimize the impact of WAN link failures on application
performance. In addition to the support of performance critical
applications running on hosts with MPTCP kernel modules, it
also incorporates MPTCP proxies for legacy TCP initiated by
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hosts with no MPTCP support as well as the default vertical
handoff mechanism for UDP traffic. In summary, we make the
following contributions:

o We motivate WaMPTCP which fuses LAN virtualization
with WAN virtualization for resilience across WAN links
(Section II).

e We present the detailed implementation of WaMPTCP
(Section III), and propose two new metrics (Section IV) to
better capture application performance under link failures.

e Through evaluation (Section V) in both emulated testbed
and real-world deployment, we show the performance
gain of WaMPTCP over existing SD-WAN solutions.

II. MOTIVATION

Consider a simple enterprise branch site network consisting
of two subnets (one wired and one wireless) as depicted in
Figure 1. The subnets are connected to a campus core network
with an SDN gateway connecting to a central office site or a
corporate private cloud via three separate WAN links (each one
to a different WAN provider). Client A has only one network
interface connected to a WiFi subnet, whereas client B has
two network interfaces, one connected to a WiFi subnet and
the other to a wired subnet. Neither clients have awareness of
multiple WAN links available at the SDN gateway. Traditional
SD-WAN solutions also use the SDN gateways for load bal-
ancing or performing vertical handoff in event of WAN link
failures or policy change [12]. They assume that the single
LAN path to the gateway is not the bottleneck or main source
of failure, and therefore the use of multiple WAN paths will
improve end user experience. The key question this article
aims to answer is: what novel mechanisms can we develop
to utilize multiple available WAN links by taking advantage
of software-define control of WAN links? We believe that a
comprehensive solution with modifications to end-systems and
SDN gateways (connecting to multiple WAN links) is required.

A. Fully Utilizing Multiple WAN Links

A common solution to fully utilize multiple WAN links is
equal cost multiple path (ECMP). ECMP implementation uses
TCP 5-tuple to assign packets to paths. ECMP is flow aware
and ensures that packets that belong to the same TCP ses-
sion use the same path over the Internet and are never spread
across multiple paths. The limitations of any flow aware load
balancing is that a single flow cannot aggregate the bandwidth
of all paths (Section V-A) and the traffic distribution can be
unbalanced and unfair when flows are not uniform, causing
artificial congestion [43].

Per-packet load balancing is offered in certain SD-WAN
solutions [12]. TCP packets of each flow are buffered and
reordered at the merge point of the paths. This is expensive in
terms of memory and computation, and tricky to get right in
the presence of packet losses and varying delays. Since stan-
dard TCP congestion control algorithms assume that packets
follow a single network path, they may get “confused” by dif-
ferent RTTs on diverse paths [14]. Packets traversing multiple
paths would arrive at the destination out-of-order, triggering
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Fig. 1. Motivating scenarios.
duplicate acknowledgments, which is interpreted by the source
as packet losses, thereby reducing the sending rate.

To overcome those issues, MPTCP [8], [36] is developed to
enable a single TCP session running on a host with multiple
interfaces to exploit multiple network paths. MPTCP man-
ages multiple subflows (each operating as a separate TCP
connection with its own congestion control), and dynamically
assigns data to each TCP subflow based on available capacity,
thus load-balancing among multiple paths. If one path fails
(or is highly congested), MPTCP automatically routes data
away from the path, thereby alleviating the impact of network
failures/congestion on application performance. In addition,
MPTCP shares various network paths fairly with regular TCP
sessions and other MPTCP sessions [19]. The benefits of using
MPTCP for load balancing, wireless handoff and coping with
network failures have been widely studied [20], [37], [38],
[46], [54]. In contrast, applying MPTCP in SD-WAN scenario
has limited investigation.

Then the question is where we should deploy MPTCP
protocol stacks. A natural way of doing so is to deploy
MPTCP proxies co-located at (or implemented as a mod-
ule within) SDN gateways [5], [11], [22]. This requires a
pair of MPTCP proxies, e.g., one at the branch site and the
other at the central office/private cloud site: a TCP connec-
tion from a client machine to a remote server is split by the
MPTCP proxy at the local SDN gateway to generate multiple
MPTCP subflows, and the gateway routes them across differ-
ent WAN links to the remote SDN gateway on the other side
of the WAN. These MPTCP subflows are then merged by the
remote MPTCP proxy before routed to the server. Clearly,
this approach incurs overhead, because it requires the gate-
ways to keep track of every single TCP connection over the
enterprise network to the WAN. Similarly, MPTCP overlay
network [31] serves the same purpose. Instead of splitting
TCP flows, it encapsulates TCP flows with MPTCP header
for fully utilizing multiple WAN paths. However, the conges-
tion control operated by the TCP connection of an application
and the MPTCP congestion control at the gateways can inter-
act negatively, creating performance penalties for high-speed
WAN links (Section V-C). Since end systems (for those with
MPTCP support in OS) have already deployed MPTCP stacks,
this triggers us to propose utilizing the MPTCP stacks on end
systems rather than duplicating them at both end systems and
gateways to avoid the negative impact of MPTCP proxy or
overlay network.

B. End System MPTCP to the Rescue?

Is deploying MPTCP at end systems alone sufficient? Again
considering the network in Figure 1, we assume that the OSs
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on both machines support MPTCP. Client A cannot avail itself
of the three available WAN links using MPTCP because it
is only aware of one directly connected (physical) network
interface. Thus, traffic from an application running on client
A can only traverse one of the three available WAN links,
failure of which will affect application performance. In the
case of client B, it can deploy MPTCP to generate two sub-
flows, one over the WiFi subnet and the other one over the
wired subnet. However, the two subflows will converge at the
SDN gateway, and both may be routed along the same WAN
link to their common destination. In such case, if there is a
heavy congestion or failure on this path, both subflows will
experience it, MPTCP cannot overcome the path condition
using multipathing, and the application will suffer. The server
could have multiple network interfaces, which would enable
the client to generate multiple subflows with different des-
tination addresses. However, the same issues persist, as the
number of subflow would not always match the number of
WAN links, and the gateway would not know how to route
them. Ideally, the number of subflows should be the cross
product of the number of WAN links and number of server
interfaces to maximise network diversity. In general, we note
that there can be a mismatch between the number of physical
interfaces at an end system and the number of available WAN
links at a SDN gateway. In addition, the gateway must dis-
tribute evenly the subflows of an MPTCP session across the
WAN links to avoid any two of them being mapped to the
same WAN link.! Making end systems aware of the availabil-
ity of WAN links at the gateway, enabling them to generate
appropriate number of MPTCP subflows, and routing these
subflows across different WAN links in a scalable manner are
challenging.

The above scenarios raise the following questions: 1) Is it
possible to enable an MPTCP-compatible end system with
only one physical network interface to fully exploit multiple
WAN links? ii) Given an end system running MPTCP with
multiple subflows, is there a scalable way to ensure that the
SDN gateway always routes subflows of an MPTCP session
across different WAN links? An astute reader may suggest
that one can use the “ndiffports” path manager option [8]
in MPTCP to create multiple subflows across the same pair
of IP addresses. However, source ports are randomly gener-
ated, so it is infeasible for a gateway to provision routing
rules based on the source ports assigned during run-time for
each single MPTCP subflow. Moreover, associating MPTCP
subflows belonging to the same session is nontrivial and
requires maintaining states at gateways [57]. In contrast, vir-
tual interfaces assigned with different subnets can be easily
provisioned, because routing rules can be statically provi-
sioned based on pre-defined subnets. Additionally, no per-
flow states are required for routing based on subnets at the
gateway.

f the gateway maps flows randomly to WAN links, or using traditional
load balancing solutions such as hashing, there is a fairly high probability
that two subflows of a session are mapped to the same WAN path, and no
subflow is mapped to another WAN path (Section V-B).
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Fig. 2. Virtualizing NIC for MPTCP stack to generate multiple subflows
and for SDN gateway to forward subflows in a stateless manner.

III. WAMPTCP OVERVIEW AND IMPLEMENTATION

WaMPTCP is designed specifically to address the require-
ments in SD-WAN for connecting branch office enterprise
networks to a central office and/or private cloud over the
Internet with multiple WAN links provisioned by several WAN
service providers. The goals of WaMPTCP are multi-fold:

o Mitigating the impact of failure/congestion on

applications;

o Aggregating WAN links capacity to deliver higher

bandwidth;

o Supporting diverse types of traffic (TCP, UDP, MPTCP);

e Maintaining fewer states at gateways for scalability

and reliability, and minimizing software changes at end
systems.

WaMPTCP is a novel scalable solution which is schemat-
ically depicted in Figure 2. It combines a low-overhead
mechanism at the end system side to create multiple virtual
network interfaces, and a scalable mechanism at the SDN gate-
way side that routes flows generated from the same application
across different WAN links, detects WAN link failures, and
adaptively reroutes flows from failed WAN links to healthy
ones with minimized performance impact.

The virtual network interfaces are WAN-aware, as each cor-
responds to one WAN link, and each is assigned with a subnet
address mapped to a WAN link at the SDN gateway (and re-
mapped to another available link if the current WAN link fails).
Hence the SDN gateway can route flows to the corresponding
WAN link via a simple source-destination address-based flow
lookup. The benefits of doing so is to fully utilize multiple
available WAN links without stateful operations on the gate-
way. The details regarding how the virtual subnet addresses
are created and advertised to end systems, and how the whole
system is implemented are presented next.

A. WAN-Aware MPTCP

As is well known, an MPTCP proxy has the limitation of
breaking TCP end-to-end semantics [28], and its scalability is
problematic, as it needs to keep track of every pair of flow
connections, and maps them back to back. Moreover, with
MPTCP proxy implementations based on HPSockd [1] and
Dante [2], respectively, we observed performance penalties for
high speed WAN links (Section V-A). Due to those limitations,
we invented WaMPTCP, a new mechanism to address the lack
of WAN link awareness at end systems.

We want an end system to initiate the same number of
MPTCP subflows as the number of available WAN links at an
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SDN gateway (or multiple of that number if the server is multi-
homed), despite the end system only having a single physical
interface. Further, the gateway should map those MPTCP sub-
flows to WAN links in a scalable manner. Thus, WaMPTCP is
composed of two major components: an IP subnet provisioning
in LAN and a flow routing on the gateway.

IP Subnet Provisioning: Instead of allocating a single IP
subnet, we allocate multiple subnets in LAN, each one asso-
ciated with one WAN link. Such provisioning uses more
subnets, and thus more IP address space. However, most cam-
pus networks nowadays use private IPv4 and IPv6 address
space for clients, which means that IP address space is rel-
atively plentiful. End systems are informed of multiple IP
subnets by DHCP protocol. The way of handling IPv4 is
different from handling IPv6 networks. For IPv4, we modi-
fied DHCPv4 protocol [16] by inserting a DHCP option into
DHCP response for informing end systems the number of
available subnets (WAN links). A modified DHCP client on
the end system uses this DHCP option to create multiple vir-
tual network interfaces via IP aliases, and sends a DHCPv4
request over each virtual interface to get each of them config-
ured with an IP address. If the number of WAN links changes
(not frequent in enterprise networks), DHCP TTL is used to
refresh the number of subnets on end systems.

IPv6 makes the above process simpler. Since assigning
multiple IP addresses per interface is a part of the IPv6 stan-
dard, there is no modification required at end systems. The
DHCPV6 server is configured to assign multiple IP addresses
to the end systems, one per each subnet, and DHCPv6
client automatically configures those IP addresses on the
virtual network interfaces. ISC DHCP server does not sup-
port multiple subnets per response, and therefore we use the
dhcpy6d server with an appropriate configuration [3].

Gateway Routing: Routing on the SDN gateway forwards
packets originated in a subnet to the associated WAN link.
This relies on source-specific routing which is supported by
most OSs. Only subnet-based static rules are required for rout-
ing instead of generating a rule for each flow. Return packets
coming from WAN links are routed based on destination sub-
net (classical routing). Our routing technique is implemented
to support both VXLAN tunneling to a remote gateway and
direct routing to the Internet. The number of rules in both
directions only depends on the number of subnets, indepen-
dently of the number of clients. If the subnets are optimally
allocated, subnet routing requires only a number of rules equal
to the number of WAN links. This very low number of rules
offers great scalability and avoids control plane churn.

Here is an example on how IP subnet provisioning and gate-
way routing work. When a host enters a LAN, it requests an IP
address from a DHCP server. Multiple IP addresses are allo-
cated to the host, and correspondingly, virtual interfaces are
created at the host, one per WAN link. After that, the MPTCP
stack on the host will “see” multiple (virtual) interfaces, and
natively generates corresponding number of MPTCP subflows
for delivering application traffic. Generated MPTCP subflows
are then forwarded to WAN links respectively based on static
(subnet-based) rules pre-defined on the gateway. When a WAN
link fails, MPTCP congestion control algorithm dynamically

adjusts the sending rate of each subflow at host, and thus the
gateway gets relieved from stateful operations.

B. MPTCP Fast Recovery

During a WAN link failure, any MPTCP subflow using the
link is affected: packets cannot reach the receiver, and the
TCP congestion control algorithm triggers retransmission and
eventually timeouts, causing the subflow to get stalled. When
a subflow is stalled, it does not send packets to probe the path
and can suffer from an outage much longer than the actual
L3 outage (Section V-C). In certain circumstance, the subflow
cannot resume at all, due to the TCP exponential backoff algo-
rithm. We propose MPTCP Fast Recovery (FR) to address the
issue of stalled MPTCP subflows on failed path, and it can be
optionally applied to both WaMPTCP and MPTCP proxy.

One obvious solution would be to crank up retransmission
frequency of all the MPTCP subflows, so that the failed sub-
flow does not wait too long before probing the path again.
Howeyver, this has a number of downsides. First, this is not
a standard configuration of an MPTCP stack, so we would
need a new mechanism for the gateway to communicate with
end systems to use more aggressive retransmission. Second,
if subflows probe failed path too often, probing packets con-
sume extra resources on the local network and on the gateway,
possibly reducing the performance of subflows using healthy
paths. Third, probing packets carry MPTCP session data, and
this data must first be sent over the failed subflow, and wait
for the failure timer, before being resent on the healthy sub-
flow. However, this can add latency to the data (over 300ms
in Section V-D).

Our solution is to allow the SDN gateway to probe for failed
subflows. When the gateway detects that a path is down, it
reroutes MPTCP subflows on that path to an alternative healthy
path. When those MPTCP subflows are on a healthy path, they
can resume progress and it prevents them to stall. At this point,
the redistributed subflow interferes with what was already on
that path, but it does not break fairness in the shared WAN
link due to the design principle of MPTCP congestion control
algorithms [8]. Once the gateway detects that the failed path
is recovered, it reroutes all the affected MPTCP subflows back
to their original path. Without stalled subflows, the recovery
time of MPTCP sessions can be improved (Figure 10).

The rerouting of all affected subflows on the gateway can
be done with a single rule matching the destination port, by
using an OpenFlow failover or select group [49], and no per-
flow state needs to be tracked. The gateway must monitor the
WAN links and update rules accordingly. These are the same
requirements as most other L3 handoff mechanisms and are
fairly standard [34]. Only one rule is needed per WAN link
for FR, making it highly scalable.

C. Handling Diverse Traffic Types

An additional challenge was building a practical system
on a gateway for properly handling diverse traffic types.
We rely on Netfilter (serving as protocol classifier) [9] and
OpenvSwitch (OVS, serving as path scheduler) [34]. The pro-
cessing pipelines are illustrated in Figure 3. Netfilter marks
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Fig. 3. Handling diverse traffic types in an SDN gateway.

packet types (TCP, MPTCP, and UDP), and then they are pro-
cessed differently in the SDN gateway. TCP sessions generated
by hosts without an MPTCP stack are detoured to MPTCP
proxy, and encapsulated into MPTCP sessions for fully uti-
lizing WAN links; MPTCP sessions are directly processed by
OVS, and forwarded to WAN links based on source-specific
routing; UDP sessions are forwarded to WAN links based on
destination routing. In OVS, there are two sets of OpenFlow
rules, one for directly mapping MPTCP flows to uplinks, and
the other one mapping other traffic to a group selecting an
uplink. The OVS failover or select group [34] is configured for
switching flows to healthy links during failure. Bidirectional
Forwarding Detection (BFD) integrated in OVS is used for
detecting WAN link failures. Overall, WaMPTCP only requires
one-time configuration in installing (virtual) subnets in DHCP
servers. At end-systems, no changes are needed for IPv6 hosts,
while DHCP client in IPv4 host only needs to execute a script
for creating virtual interfaces once during IP provisioning.
MPTCP is designed to make sure that MPTCP sessions
fairly share the network path they are using with other TCP
sessions and MPTCP sessions on that path [19]. Therefore no
extra mechanism is needed at the gateway to enforce fairness.
WAN links are the most likely bottlenecks, where contention
will happen. In the absence of failure, for every MPTCP ses-
sion, exactly one MPTCP sublow is mapped on each WAN
link, making achieving fairness easier. With failure and FR,
multiple flows of the same session may be mapped to the
same WAN link, various studies show that MPTCP can also
handle this more complicated case fairly in practice [18].

D. Interaction With Middleboxes

The actual paths from client to the WAN are not always
as simple as direct links shown in Figure 2. Middleboxes
that transform, inspect, filter, or manipulate traffic are widely
deployed in the network for the purpose of improving
performance and security. We analyzed whether common mid-
delboxes such as NAT or firewall would affect the functionality
of WaMPTCP.

In most cases, middlebox functionality is placed before tun-
neling, so routing and failover would happen on the external

side of middleboxes. Thus, the gateway would receive packets
modified by middleboxes. Since the gateway relies on source-
specific routing, middleboxes without modifying source IP do
not affect the functionality of WaMPTCP. In the case that
source IP is modified, the gateway still distributes (NATed)
IPs in different subnets to different WAN links, and thus the
functionality of WaMPTCP does not get affected. Even though
middleboxes may convert source IPs from different subnets to
the same outgoing IP, it falls back to the scenario with no
WaMPTCP, because the virtualized IP addresses on the same
host are unified back.

In the cases that middlebox function is placed after tun-
neling, WaMPTCP functionality are not affected, since traffic
goes through WaMPTCP first. Middleboxes only see the exter-
nal tunnel with encapsulated headers. Unless middleboxes
need to perform statistics based on host (per-host metrics),
the functionality of middleboxes are not affected as well.

IV. PERFORMANCE METRICS FOR VERTICAL HANDOFF

MPTCP implements vertical handoff at client side, while
a traditional SD-WAN handoff happens at the gateway. Since
they use different mechanisms, we propose two new metrics
for evaluating different SD-WAN techniques on application
and network session performance. The metrics cannot only
capture SD-WAN performance, but also drive the design of
WaMPTCP. We first present the problem of existing Layer 3
metrics for measuring vertical handoff, and then describe two
new metrics taking L4 information into account.

A. Layer 3 Metrics

Vertical handoff is well characterized at layer 2 (link) and
layer 3 (rerouting) [45], [47]. There are two types of handoff
events: 1) proactive handoff, usually the result of a policy
decision or a link being activated; 2) reactive handoff, usually
the result of an Internet path outage. Up to layer 3, a handoff
is commonly decomposed into four phases:

e Detect: A mechanism must detect that the Internet path

has failed or a policy has changed;

o Compute: An entity decides what routing changes to

make;

e Notify: The entity that computed the new routes must

notify the entities that perform rerouting;

o Switchover: A mechanism must change the routing of

impacted traffic to the alternate Internet path.

Consequently, the time of performing a handoff is the sum
of time spent over four phases, and it applies to both proac-
tive and reactive handoff. Prior studies have defined Layer
3 metrics for measuring handoff performance under various
network settings, e.g., [21], [33], [53]. However, those com-
mon Layer 3 metrics do not show the true cost of vertical
handoff, because TCP congestion control is also impacted.
Moreover, those Layer 3 metrics cannot apply to MPTCP,
because MPTCP handoff does not happen at Layer 3.

B. Metrics Taking Layer 4 Into Account
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have also been proposed, e.g., [21], [29]. These studies
examine the impact of link failures on TCP performance
by observing congestion window reduction, instant TCP
throughput degradation, or packet losses. These metrics are
too specific and are not directly related to the application
experience. Therefore, we propose two new metrics to
evaluate the impact of TCP connection handoff. We require
the new metrics to have the following features: 1) a direct
measurement of the handoff effect; 2) applicable of measuring
both reactive and proactive handoff, due to path outages
or policy changes; 3) related directly to the application
performance.

The first metric is T-throughput: time for throughput repair.
It measures the time elapsed from the start of the outage or
policy change, i.e., as soon as the link becomes undesirable, to
when the throughput of an affected TCP connection is fully
restored. As shown in Figure 4, there are two WAN links.
Before outage, a flow is traversing over WAN link 1. The link
fails at time T1, and then it takes time for the gateway to
detect the outage. After that, the handoff mechanism at the
gateway migrates the flow from link 1 to link 2 at T2. After
the flow is placed on link 2, it takes additional time (T3 - T2)
for throughput to fully recover.

As the conditions on the old path and the new path may be
different, the expected throughput on the new path is likely
different from that on the old path. Therefore, we consider
that the TCP throughput has been fully restored when it has
obtained fair share of the new path bandwidth. In other words,
fair share throughput indicates that the TCP slow start phase
has ended and the throughput becomes relatively stable. This
metric better measures the impact of handoff on an application
that is bandwidth-bound (e.g., a file download), as it quantifies
how long an application suffers from performance degradation
before it gets fully recovered. This metric is a function of how
efficient a TCP congestion control algorithm operates after the
handoff.

The second metric is T-latency: time for latency repair. It
measures the time elapsed from the start of the outage or
policy change, to when all packets lost during handoff are
retransmitted on a healthy path. Figure 5 show an outage hap-
pening at T1. Before T1, packets P.1 and P.2 are successfully
delivered over Path 1. After T1, packets P.3 and P4 fail to
be delivered. At time T2, handoff happens and those failed
packets are queued to be resent over a healthy path. At time
T3, the last failed packet R.4 gets delivered, and thus we
measure T3 - T1 as the time for latency repair. This metric
provides a better measure of impact of handoff on an applica-
tion that is latency-bound, e.g., interactive gaming over TCP.
It also better describes the impact of handoff on any applica-
tion suffering from stragglers (late packets). In particular, the

Time, T1 T2 T3
L4 T-latency repair

Worst retry latency

P.1 P.2
Outage

Fig. 5.

Handoff

Retries

R4 B PS5

T-latency Metric.

MPTCP receiver needs to reserialize the incoming data prior
to delivering it to the application, so any stragglers will block
the receiver and increase receive buffer consumption (receive
buffer blocking [27]). This metric is a function on how efficient
the TCP retransmission mechanism operates after the hand-
off, and how aggressive the MPTCP scheduler is in switching
MPTCP subflow.

We verified that these metrics are able to properly explain
the performance of applications during handoff (Section V-F).
A key benefit of these two metrics lies in that they allow us
to evaluate how TCP configurations and network conditions
affect the network failure recovery time (Section V-D). In par-
ticular, they enable us to design better failover and recovery
mechanisms under MPTCP and evaluate them fairly against
existing (single-path) TCP mechanisms.

V. EVALUATION OF WAMPTCP

We evaluated WaMPTCP in both controlled testbeds
and real-world deployment. This allowed us to evaluate
performance across a wide range of workloads and network
conditions.

We compared the following mechanisms in the experiments:

o Tunnel Handoff is a baseline. It uses OVS version
2.4.2 [34] to route flows over VXLAN tunnels. Unless
specified, application data is carried in plain TCP, while
some tests do use plain MPTCP without WAN awareness;

e MPTCP Proxy is a transparent proxy solution. By default,
MPTCP Proxy in our experiments is our proxy imple-
mentation based on Dante Socks proxy version 1.4.1 [2].
For performance comparison, we also used our modified
version of HPsockd v0.17 [1];

o MPTCP Tunnel [31] is an overlay solution which tunnels
TCP over MPTCP. All TCP flows are encapsulated in
a single MPTCP flow between gateways. We used the
implementation available online [4];

o WaMPTCP is implemented in end systems and SDN gate-
ways (Section III-A). End systems are provided with one
IP address per WAN link. Fullmesh, the default MPTCP
path manager, is used, and SDN gateways route MPTCP
subflows based on source subnets;

o WaMPTCP+FR is WaMPTCP equipped with FR
(Section III-B). When a gateway detects a path failure,
it routes infected MPTCP subflows away from the failed
path, and routes them back when the path is recovered.

The testbed for the Aggregation and Fairness experiments
uses six Debian version 9 servers and its topology is broadly
similar to Figure 1. There are 2 clients connected via 10 Gb/s
links to the local gateway. The local gateway is connected to
a remote gateway via five 1 Gbps WAN links. Two servers
are connected to the remote gateway via 10 Gb/s links. The
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TABLE I
THROUGHPUT AGGREGATION COMPARISON

Direct Routing VxLAN tunnels

Mb/s IPv4 | IPv6 | 10 IPv4 | IPv4 | IPv6 | 10 IPv4
Plain TCP 941 928 944 908 893 4550
Plain MPTCP 928 915 931 893 888 4480
MPTCP Tunnel 120 N/A 119 114 N/A 112
HPsock Proxy 740 N/A 1050 752 N/A 876
Dante Proxy 4285 | 3925 4550 3233 | 2763 3610
WaMPTCP 4606 | 4531 4640 4433 | 4221 4490

local gateway implements source subnet routing, whereas the
remote gateway use standard destination subnet routing. When
VXLAN tunnels are used, there is one on each of the 5
link. The local and remote gateways are tunnel endpoints and
they are implemented using OVS. MPTCP version 0.93 is
used. MPTCP CRC are disabled. The scheduler is fullmesh
and Cubic is the default congestion control. Packet MTU is
1500B on the links and 1450B on the VXLAN tunnel, and all
other network parameters and drivers are using out-of-the-box
defaults.

The testbed for handoff and metric experiments is similar. It
uses six Ubuntu 16.04 servers. Two links between the gateways
are 100 Mb/s, while the links to clients and servers are 1 Gb/s.
All other configuration parameters are the same.

A. Evaluation of Bandwidth Aggregation

Table I shows the overall throughput of the 6 scenarios
with a single IPv4 connection, a single IPv6 connection, or
10 IPv4 connections. Direct routing (i.e., no VxLan tunnels)
can only use the default path for plain TCP connections due
to routing constraints, while VXLAN tunnels can use per-flow
load balancing to aggregate link capacity. Since there is only
one physical NIC on each host, there is only one subflow
generated for each connection when using plain MPTCP, so
MPTCP does not show any improvements over using plain
TCP. Even though plain TCP and plain MPTCP achieved sim-
ilar throughput as WaMPTCP when there are 10 flows, plain
TCP or plain MPTCP may not be overall fair between the 10
flows (Section V-B). MPTCP tunnel is far from saturating the
links even when there are 10 flows, and further experiments
indicated that this is a control loop issue (Section V-C). Dante
proxy is a much better implementation than HPSock proxy,
and therefore shows much better performance. Dante proxy
offers lower throughput than WaMPTCP due to the smaller
MTU and the higher CPU load. WaMPTCP performs the best
because it can saturate all available bandwidth in all confitions
tested.

B. Evaluation of Multipath Fairness

Previous studies have shown that TCP and MPTCP sessions
share fairly the network path they are using with other TCP
and MPTCP sessions on the same path [18]. On the other hand,
the SDN gateway provides multiple paths, so it also needs to
make sure the multiple flows are placed on the various paths
fairly. When direct routing is used, the gateway cannot provide
multipath for TCP flows, so we consider only the case where
VxLAN tunnels are used. For TCP flows, Tunnel Handoff uses
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a flow based hash to map TCP flows to WAN path, which is
implemented using a OpenFlow select group in OVS [34].
For MPTCP sessions, WaMPTCP maps one subflow of each
MPTCP session on each WAN path.

Our fairness experiments involve generating simultaneously
a random number of TCP or MPTCP parallel sessions contend-
ing for the 5 VXLAN tunnel over 5 WAN paths, each offering
1Gb/s. To normalise for the different number of sessions in
each experiment, we compare the throughput of each session
to the expected throughput, 4.5 Gb/s divided by the number of
sessions (Section V-A). Each experiment has a random number
of TCP or MPTCP session, between 5 and 15, lasts 60s and
the experiments are repeated to collect over 10000 sessions.
Figure 6(a) shows that flow hashing is spatially unfair due to
hash collisions. Flow hashing cannot guarantee that exactly the
same number of TCP flows are mapped on each WAN path.
Further, for low number of flows, the fact that flows cannot be
split prevent reaching a fair solution, for example there can-
not be a fair distribution of 6 flows on 5 paths. Many flows
get half of the expected average throughput, a very few flows
can get up to 3 times of the expected average throughput.
There are experiments where no flow is mapped to one of the
WAN paths, and as a result the average aggregate throughput
of all experiments is only 3776 Mb/s (84%). Those are known
issues of ECMP style load balancing, and ways to overcome
those are usually complex, and can usually only apply to a
few long lived flows [15], and are never perfect as flows can-
not be split. Figure 6(b) shows that WaMPTCP is very fair,
with very few exceptions the throughput of MPTCP sessions
falls within [—6%; +6%] of the expected. Average aggregate
throughput is 4478 Mb/s. MPTCP increases the overall num-
ber of subflows in the system by a factor five, so increases
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TABLE II
VERTICAL HANDOFF PERFORMANCE OF DIFFERENT MECHANISMS ON THE TESTBED

seconds T-throughput-failure | T-latency-failure T-throughput-recovery | T-latency-recovery
BFD timer 1s 100ms 1s 100ms 1Is 100ms
Tunnel Handoff 3.77 | 0.63 3.52 | 0.56 1.33 | 0.42 0
MPTCP Tunnel 0 0.34 6.57 0
MPTCP Proxy 0 0.37 6.41 0
WaMPTCP 0 0.32 6.86 0
WaMPTCP+FR 0 0.32 1.28 [ 0.44 0
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all sessions to 750 Mb/s divided by the number of sessions
in the experiment. The average aggregate throughput of TCP
sessions is 620 Mb/s (83% - same as alone), and the spread
is lower than when alone. Thus, the presence of MPTCP traf-
fic is not hurting the TCP sessions and fairness is preserved.
MPTCP traffic average aggregate throughput is slightly higher
than expected, 3874 Mb/s, because it can take advantage of
cases where Tunnel Handoff maps too few sessions to a path.

C. Analysis of Handoff Trace

We next zoom in different mechanisms to observe their
handoff behaviors. We initiated one TCP flow, and broke
the link it is using (labelled as “LK1” in the figure) after
5 seconds. After keeping the link down for 10 seconds, we
recovered it. Breaking down a link is performed by installing
Netfilter rule [9], which is almost instantaneous. We decom-
pose an outage into two phases: failure (which typically harms
throughput) and recovery (which typically benefits through-
put). We did not evaluate policy changes, since its effect is
identical to a recovery from an outage. MPTCP proxy behaved
almost identically to WaMPTCP, so it was not shown.

Figure 7 shows that tunnel handoff does not aggregate
available bandwidth on the two WAN links together, and it
experiences more than 3 seconds down-time during failure.
Approximately 3 seconds after the link is blocked, BFD con-
sidered the path as failed (3 BFD intervals), and tunnel handoff

rerouted the affected flow to the healthy link, and it resumed
progress. After the failed WAN link is unblocked, BFD even-
tually discovers that the path is healthy, and notifies OVS to
reroute the flow to its original path. In our experiment, there is
throughput spikes shortly after recovery. This is because prior
to handoff, the flow had filled the send buffers of the NIC
and the tunnel endpoint on the gateway before the WAN link
(which is the bottleneck). After handoff, the flow moved to an
empty link, and could therefore transmit immediately, while
the other link was still draining its send buffers. This caused
out-of-order packets [39]. Since the Linux TCP/IP stack has
optimization to overcome out-of-order packets [21], it did not
hurt throughput.

MPTCP Tunnel in Figure 8 does not exhibit stable through-
put even without any background traffic. It is mostly caused
by the interaction between the outer TCP control loop (end-to-
end) and inner TCP control loop (tunnels established between
gateways). This is a well-known issue of any TCP in TCP
encapsulation [10].

Since MPTCP natively supports resilience by maintaining
multiple subflows, there is no down-time observed during fail-
ure in Figure 9 and Figure 10. Conceptually, suspension of one
subflow does not affect the other one.

Figure 9 shows that when FR is not used, the subflow get
stalled (Section III-B). When the failed link is recovered, it
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takes less than 1 second for the gateway to get notified, but
throughput needs further 5 seconds to recover fully. Further
experimentation shows that this L4 throughput repair time
depends on the length of the outage and is due to TCP RTO
backoff (Figure 14). In contrast, Figure 10 shows that FR pre-
vented the subflow from getting stalled, and that it recovered
the bandwidth of the second path very quickly after being
moved to the recovered path.

D. Evaluation Using Handoff Metrics

In order to quantitatively study handoff impact on transport
layer, we need to use the two new metrics, T-throughput and
T-latency, proposed in Section IV-B. We evaluated the metrics
for both failure phase (when flows are switched to healthy
links from failed links) and recovery phase (when flows are
switched back from healthy links to recovered links).

The speed at which gateway gets notified of the failure is
the main factor in the performance of any layer 3 handoff.
The BFD protocol is used by the gateway to evaluate the
health of the WAN link and the Internet path. The period of
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Fig. 13.  BFD impact over T-throughput-recovery.

BFD handshake is equal to the BFD timer. By default BFD
declares path failure after 3 failed handshakes, and declares a
path recovered after a single successful handshake.

Figures 11, 12, 13, and Table II study the impact of BFD
timer on our metrics for each mechanism. Those experiments
confirmed that performance of tunnel handoff and FR at TCP
level is proportional to the setting of the BFD timer, both
for the failure and recovery phase. The actual time for tunnel
handoff is larger than the time of the Layer 3 handoff. MPTCP
without FR are not using BFD, and therefore is not impacted
by BDF settings. As shown in Figure 11, tunnel handoff would
need to use a very small BFD timer to compete with how
MPTCP handles failure. However, this increases overhead and
the risks of false positive.

The metrics do confirm many of our earlier findings.
MPTCP provides a much better failure performance, and
MPTCP without FR suffers from worse recovery performance
due to stalled flows. Figure 11 also shows that T-throughput-
failure is zero with MPTCP. This confirms that the throughput
of the subflow on the healthy link is not impacted. T-latency-
recovery is always zero across all mechanisms, because there
is no retransmissions.”

The traffic traces in Section V-C show near instant handoff
for MPTCP, the metrics are useful to show that this is not
the case. T-latency-failure in Table II and Figure 12 shows
that for all MPTCP mechanisms, some data gets stuck for
around 320ms on the failed subflow before being retransmit-
ted on the healthy subflow. This level of delay could impact
latency sensitive applications. This measurement can also be
use to properly dimension MPTCP receive buffers to avoid
packet discards due to receiver blocking [27]. Such outages
are highly unpredictable and infrequent, so MPTCP mecha-
nisms that schedule packets based on their predicted latency
will not be able to compensate for it. We believe this level of
delay is way to large for high speed networks, and the MPTCP
scheduler should be improved to reduce it when RTT is low.

In Figure 13, T-throughput-recovery of MPTCP proxy or
WaMPTCP are much higher than that of tunnel handoff or
WaMPTCP with FR. This is because even though a failed link
is recovered, and the gateway knows about it, the gateway has
no way to “ask” end systems to send packets over it immedi-
ately. The application traffic has to wait until end systems issue

2Even though packet retransmissions may be triggered due to congestion,
we did not take it as caused by failure.
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packet retries over suspended connection, and get response.
The retry rate is determined by RTO. RTO in TCP grows in
an exponential way during an outage. Thus, when an outage
last longer, TCP probes the link less often at recovery time,
and the probability of a quick recovery decreases.

Figure 14 shows the impact of the outage duration on the
recovery phase and the T-throughput-recovery metric. Without
FR, MPTCP recovery is very slow, and grows with outage
duration. During outage, TCP resends SYN packet after 0.2
seconds by default in Linux, and the interval grows exponen-
tially with a default maximum as 120 seconds. The default
number of retry is 15, and thus the maximum outage that can
be tolerated is 924.6 seconds. For high-availability server, the
suggested the number of retries is 3 [13]. In this case, if the
outage duration is larger than around one second, a stalled
subflow will never resume.

In contrast, tunnel handoff and FR utilize BFD for link sta-
tus detection, and therefore are independent of outage duration

TABLE III
IMPACT OF TCP CONGESTION CONTROL (BFD=1s,
TPUT IS THROUGHPUT)

T-latency-fail (s) | T-tput-recover (s) Tput (mbps)
RTT | Ims 100ms Ims 100ms Ims | 100ms
cubic 043 | 0.71 1.26 | 12.3 179 | 126.0
reno 041 | 1.00 1.65 | 384 179 | 125.0
vegas 0.22 | 0.65 1.92 | 349 175 | 125.0
illinois 0.44 | 0.86 1.25 | 232 179 | 124.0
veno 0.33 | 0.74 1.31 | 26.8 179 | 125.0
westwood | 0.27 | 0.55 1.43 14.9 179 126.0
olia 0.38 | 0.90 1.10 | >120 179 | 83.9
balia 0.62 | 0.72 1.06 | 82.7 179 | 93.5
wvegas 0.64 | 0.59 1.46 | >120 179 | 54.6

(Figure 14). If an MPTCP subflow is not stalled, 7-throughput-
recovery is approximately layer 3 recovery time plus the delay
for congestion window (cwnd) growth. Congestion window
growth closely depends on round trip time, bandwidth, and
congestion on the path (Section V-E).

E. TCP Congestion Control

Figure 15 shows that T-throughput-recovery grows as RTT
of the path grows for all mechanisms. A higher RTT forces
TCP to use a larger congestion window (cwnd), and it also
makes opportunities for cwnd adjustments less frequent, and
thus it takes more time to recover the full cwnd. Without FR,
the cwnd of subflow routed back to the recovered link has to
grow to reach the entire tunnel bandwidth from TCP slow start.
Mechanisms with FR do not have to perform an entire cwnd
recovery, since subflows are not stalled (Section III-B), giving
smaller T-throughput-recovery. Further, the cwnd of subflow
on healthy link and the cwnd of subflow on just recovered link
can grow in parallel.

Table IIT shows the impact of TCP congestion control algo-
rithms over the performance of WaMPTCP with FR. In this
set of experiments, six TCP congestion control algorithms are
uncoupled, while the last three - olia, balia, and wvegas - are
coupled and specifically designed for MPTCP [8]. We artifi-
cially added 1ms or 100ms latency to both WAN links using
Linux Traffic Control [7] to emulate a large Bandwidth x
Delay Product (BDP) network. Different congestion control
algorithms suit different network characteristics. For example,
Reno underutilizes “long fat” paths, and after packet losses
its cwnd grows by one every RTT, which explains its slower
recovery. We verified that for the coupled congestion control
algorithms, fairness is proportional to the number of MPTCP
sessions, while for uncoupled congestion control algorithms,
the fairness is proportional to the number of subflows. Higher
RTT reduces achievable throughput in all cases. Congestion
windows of three coupled congestion control algorithms grow
very slowly. Two of them do not even get recovered after 120
seconds. They suffer from lower throughput at 100ms RTT,
which indicates the need of further improvements before they
can be used for SD-WAN scenario.

Above tests explore only a single MPTCP session in
idle links. Figure 16 shows an increasing number of TCP
background flows competing for the WAN links. Contention
does not impact T-throughput-recovery much. T-latency-failure
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TABLE IV
HTTP DOWNLOAD DURATION WITH INTERMITTENT LINK IN CONTROLLED TESTBED (SECONDS FOR 2GB FILE)

BFD timer Is 100ms
Time between link Is 2s 3s 4s none Is 2s 3s 4s none
events (on or off)
Tunnel Handoff >3600 | >3600 | >3600 | 680 177 305 235 205 197 177
MPTCP Tunnel stall stall stall stall 94 stall | stall | stall | stall 94
MPTCP Proxy 176 175 175 173 91 176 175 175 173 91
WaMPTCP 176 175 175 173 91 176 175 175 173 91
WaMPTCP+FR 176 175 175 168 91 162 155 146 131 91
TABLE V

TCP TRANSACTION RATE WITH INTERMITTENT LINK IN CONTROLLED TESTBED (TRANSACTIONS/SECONDS)

BFD timer Is 100ms

Time between link Is 2s 3s 4s none Is 2s 3s 4s none
events (on or off)

Tunnel Handoff 754.1 839.1 2021.8 | 2700.1 | 3854.0 1989.4 | 34379 | 3737.7 | 3692.8 | 3911.9
MPTCP Tunnel stall stall stall stall 3923.5 stall stall stall stall 3943.2
MPTCP Proxy 3854.02 | 3883.3 | 3807.7 | 38719 | 3946.4 3847.6 | 3842.7 | 3820.9 | 3845.7 | 3876.3
WaMPTCP 3835.7 382277 | 3807.2 | 3884.0 | 4061.8 3835.1 | 3864.2 | 3886.6 | 3804.5 | 4048.5
WaMPTCP+FR 3879.7 3854.6 | 3873.9 | 3869.5 | 4036.8 3828.0 | 3855.3 | 3889.3 | 3818.6 | 4054.5

increases with contention, because the congestion window size
shrinks and causes more delay for retransmitted packets.

F. Handoff Impact on Applications

WAN link failures (e.g., link flapping) happen more fre-
quently than expected [50]. Therefore, we evaluate the impact
of intermittent links on applications [40], [58]. For example,
it may occur on a wireless link with slow fading [48]. In our
tests, the backup link is always healthy, and the primary link
alternates between on and off state at periodic interval. 50% of
the time is blocked using Netfilter. Half of the handoff are reac-
tive and the other half is proactive, which is more strenuous
than frequent policy changes [21] (only proactive handoff).

Table IV explores the impact of intermittent links on
download performance. The client downloads a 2GB file
from a Web server using wget. This represents throughput-
sensitive applications, and the 7-throughput-failure and
T-throughput-recovery metrics explain the non obvious appli-
cation performance. With BFD timer of 1s, performance is low
when using Tunnel handoff, especially for frequent outages.
T-throughput-failure is greater than 3s (Figure 11), so TCP
does not have enough time to fully recover either on the pri-
mary link or the backup link before the next outage. A shorter
BFD timer of 100ms has a shorted T-throughput-failure,
enabling TCP to recover between outages, thus improving
performance. The metrics are independent of the outage dura-
tion (Section V-D), and therefore the performance is mostly
proportional to the outage frequency (for the same overall link
duty cycle).

MPTCP based mechanisms without FR use only a sin-
gle link after the first outage, and thus the download time
is almost twice the time larger than those without outage.
T-throughput-recovery is greater than the outage duration
(Fig. 13), effectively preventing usage of the intermittent link
even when it is healthy. T-throughput-recovery increases with
the outage duration (Fig. 14), so only an increase in the
duty cycle of the bad link would allow the affected subflow

to recover. Despite the large T-latency-failure (Figure 12),
the throughput of MPTCP with outages is better than the
performance of a single TCP flow without outages, which
indicates that the impact of buffer blocking and stragglers is
fairly minimal in those tests. FR with a short BFD timer has
a much lower T-throughput-recovery (Fig. 13), this enables
the affected subflow to exploit the intermittent link during the
time between outages, with performance mostly proportional
to the outage frequency. T-throughput-recovery is independent
of the outage duration (Fig. 14), thus the performance is sim-
ply proportional to the outage frequency. MPTCP Tunnel is
completely stalled in presence of frequent outages and needs
to be restarted.

Table V explores the impact of intermittent links on trans-
action rate by using Netperf TCP_RR test. This measures the
number of bidirectional transactions on a TCP connection.
This represents latency-sensitive applications: higher trans-
action rate can only be achieved with shorter round trip
latency.

With BFD timer of 1s, Tunnel handoff makes slow progress
for frequent outages, T-latency-failure is greater than 3s
(Figure 12), so TCP does not have enough time to fully
recover either on primary link or backup link before the
next outage. A shorter BFD timer of 100ms has a shorted 7-
latency-failure, enabling TCP to recover between outages, thus
increasing performance. MPTCP tunnel is stalled when deal-
ing with intermittent link. Without outages, the performance
of MPTCP mechanisms is just slightly higher than tunnel
handoff. This means that parallelism does not help in this
experiment when there is no failure, because there is only
one tiny transaction at a time for this latency test. In the pres-
ence of outages, MPTCP based mechanisms is unaffected by
the outage frequency because they can switch to the healthy
link. The MPTCP scheduler prefers the link with the low-
est RTT, therefore after the first few outages, it permanently
avoids the intermittent link. In contrast, BFD can only do
binary evaluation of the link (on or off status). T-latency-
failure explains the slight performance degradation of MPTCP
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TABLE VI
HTTP DOWNLOAD DURATION WITH INTERMITTENT LINK IN GENI TESTBED, 100Ms BFD (SECONDS FOR 20MB FILE)

Intermittent link low-latency link high-latency link

Time between link Is 2s 3s 4s none Is 2s 3s 4s none
events (on or off)

Tunnel Handoff 350 | 218 137 125 49 167 113 80 72 49
MPTCP Tunnel stall | stall | stall | stall 32 stall | stall | stall | stall 32
MPTCP Proxy 90 77 68 61 32 62 58 50 49 32
WaMPTCP 92 78 67 63 32 62 57 51 47 32
WaMPTCP+FR 62 71 62 56 32 58 52 49 42 32

TABLE VII

TCP TRANSACTION RATE WITH INTERMITTENT LINK IN GENI TESTBED, 100MS BFD (TRANSACTIONS / SECONDS)

Intermittent link low-latency link high-latency link
Time between link Is 2s 3s 4s none Is 2s 3s 4s none
events (on or off)

Tunnel Handoff 7.72 9.67 12.48 | 14.09 | 19.55 11.73 | 14.11 1478 | 13.53 9.83
MPTCP Tunnel stall stall stall stall 19.45 stall stall stall stall 19.36
MPTCP Proxy 1098 | 11.22 | 1245 | 1398 | 19.56 19.34 | 19.31 19.33 | 19.33 | 19.34
WaMPTCP 11.19 | 11.65 | 1233 | 14.19 | 19.32 19.34 | 19.34 | 19.31 19.33 | 19.34
WaMPTCP+FR 11.13 | 11.52 | 12.35 | 14.78 | 19.34 19.33 | 19.38 | 19.33 | 19.34 | 19.37

the experiments with intermittent links (Section V-F), using

University of Washington InstaGENT 100ms BFD timer. The major difference is that the overall

RTT 55 7ms latency of those WAN paths are much higher, and one path has

Client

mi ® |

node-0 |RTT <ims
BW 95.4mbps

BWl&ambps

RTT <1ms,
BW 95.4mbps

node-4
Server

Fig. 17. GENI testbed setup.

schemes in the presence of outages. A few transactions are
stuck on the failed link until they are retransmitted on the
healthy link, blocking overall progress. We only evaluated
the default MPTCP scheduler, leaving evaluation on other
advanced MPTCP schedulers [27], [30] to be a future work.

G. IP Provisioning (DHCP)

WaMPTCP provisions multiple IP addresses to end systems
rather than a single one (Section III-A). The latency of regular
IP provisioning via DHCPv4 and DHCPv6 is around 1.7 sec-
onds. DHCPv4 provisioning over WaMPTCP takes around
2.6 seconds, whereas DHCPv6 provisioning over WaMPTCP
takes around 1.7 seconds. WaMPTCP with DHCPv6 can get
all TP addresses provisioned in a single response, whereas
WaMPTCP with DHCPv4 requires additional requests, each
for one subnet.

H. Evaluation in the Wild

We deployed WaMPTCP in the real world to confirm the
findings of our testbed. We performed experiments over the
Internet in both GENI testbed [6] and Amazon AWS.

In GENI testbed, we created a 5-node topology as shown
in Figure 17. We tested handoff performance by performing

twice as much latency as the other path. Therefore, we ran the
experiment with the primary and intermittent link being either
the low-latency link or the high-latency link, respectively.

Table VI shows the impact of intermittent links on down-
load performance, and confirms the results from the controlled
testbed. For tunnel handoff, the penalty of handoff is compar-
atively higher, this is due to the higher RTT causing larger
T-throughput-failure and T-throughput-recovery (Figure 15).
Without outages, MPTCP does not have twice the performance
of Tunnel Handoff, it cannot exploit both links fully due to
the higher and differing RTTs. For MPTCP, outages on the
low latency link produce more performance degradation than
on the high latency link, which is expected as the MPTCP
scheduler by default prefers to send packets over low-latency
path. The performance of MPTCP with outages is worse than
the performance of a single TCP flow without outages. For
those RTTs, the T-throughput-recovery can be as high as 20s
(Figure 15), MPTCP is suffering from a straggler issue where
a few packets are getting stuck on the stalled MPTCP subflow.
FR reduces T-throughput-recovery (Figure 15), which explain
why FR outperforms regular MPTCP.

Table VII explores the impact of intermittent links on
transaction rate by using Netperf TCP_RR test. The TCP trans-
action rate depends on latency, so tunnel handoff performs as
well as MPTCP based solutions if the primary link is the low-
latency link with no failure. Interestingly, when tunnel handoff
uses the high latency link as primary, the occurrence of outages
actually increases transaction rate (from 9.8 to 13.5), despite
the cost of handoffs, because the outages force the traffic to
use the low-latency link which has higher performance. With
MPTCP, when the intermittent path is the high-latency path,
there is no performance loss: the MPTCP scheduler by default
prefers to send packets over low-latency path, so it avoids the
intermittent link entirely. When the intermittent path is the
low-latency path, the scheduler sends transaction roughly in
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TABLE VIII
NETWORK PARAMETERS FOR EC2 ACCESS

RTT Throughput
Cellular 138~162 ms | 1.2 Mb/s
WiFi 181~242 ms | 1.64 Mb/s
Ethernet | 100~120 ms | 6.4 Mb/s
1 FE
ww@ﬁM
0.8 4
w
@ 0.6
8
g— 0.4
i
0.2 = Tunnel Handoff with outage
©— Tunnel Handoff without outage
00 200 400 600 800 1000

Web Object Download Completion Time (ms)

Fig. 18. Web browsing via Handoff.

equal measure one each path. Thus for infrequent outages, the
end result is the average of the performance of each path. With
increased outage frequency, more transactions are delayed due
to the high T-latency-failure, decreasing performance.

In the next experiment, we instantiated a HTTP server
(Apache 2.4.18) in Amazon Elastic Compute Cloud (EC2) in
eu-west-1 zone. The local gateway uses three types of access
networks: a cellular network by using the hotspot feature on a
mobile phone (serving as a 2.4Ghz wireless routers), university
WiFi (connecting it with a PAUO6 300Mbps Wireless N USB
Adapter), and university Ethernet (1 Gbps NIC). Those WAN
links offer different raw download performance (Table VIII).
A CNN’s homepage (consisting of 216 objects) is downloaded
and stored in an EC2 server. A security group is properly con-
figured to make tunnel connections and server access feasible.
Apache 2.4.18 is used as the HTTP server, and HTTP persis-
tent connections are enabled with default 5-second Keep Alive
Timeout. We choose Ethernet as primary link because it is the
most reliable one among the three.

We manually created a single 1-second outage on the
Ethernet path and investigate the cumulative distribution
function (CDF) of Web object loading time. Figure 18 shows
that for tunnel handoff with 100ms BFD timer, the application
suffers from the outage (separation of blue and red curves).
Figure 19 shows that WaMPTCP with FR can successfully
hide the outage from the application.

VI. RELATED WORK

The innovation of SDN technology brings new possibili-
ties for WAN. It drives network optimization by relying on
logically centralized control of network resources. Our work
builds on related research as categorized below.

A. Link Utilization in SD-WAN

SD-WAN solutions [25], [52], [55] have been exten-
sively studied in both enterprise and literature. EXxisting
SD-WAN productions [12] use techniques similar to Tunnel
Handoff for reliability, and certain solutions provide more
features such as aggregated link utilization and fast failover.

=g
T
o8 ﬁM |
3
&
o 0.6
©
2
a
e 0.4
i}
0.2 ——WaMPTCP+FR with outage
© - WaMPTCP+FR without outage
o . L . . ;|
o 200 400 600 800 1000
Web Object Download Completion Time (ms)
Fig. 19. Web browsing via WaMPTCP.

However, implementation details of these solutions are rarely
open-sourced. In the literature, the benefits of using MPTCP
for throughput and failover are studied in various scenar-
i0s [20], [32], [38], [46], [54], [56]. Moreover, several MPTCP
proxies [5], [11] are implemented for the purpose of link
utilization. In contrast, we focus on applying MPTCP to an
SD-WAN scenario which has not been fully explored by taking
practical campus network constraints (e.g., end-host only uses
one physical NIC to connect gateway) into account, and study-
ing the metrics directly related to application performance
during vertical handoff.

B. Fast Failure Recovery

Traditional network relies on fast reroute mechanism when
there is an edge cut. For example, failure recovery time gets
remarkably reduced when fast reroute mechanism is applied
in IP and MPLS networks. In commodity devices, loop-free
alternate [44] is a common method to support fast reroute.
RSVP-TE [17] is typically applied to manage recovery path
in MPLS fast reroute.

In SDN, shortest path algorithms [35], [41] are used to
compute recovery paths. SDN controllers such as ONOS and
Onix take Dijkstra algorithm for shortest path computation.
There are many novel fast recovery mechanisms proposed in
the recent years. For example, Shared Queue Ring [42] is an
on-switch mechanism that completely eliminates packet loss
during link failures by diverting the affected flows seamlessly
to alternative paths. Switches managed by Blink [23] maintain
backup next hops by analyzing TCP flows at line rate. Sahri
and Okamura [41] propose a novel fast failover architecture
by having a central controller to compute backup path so as to
reduce switching delay. Ranadive and Medhi [39] explore the
effect of route fluctuation on TCP. Carpa et al. [21] explore
the effect of frequent SDN route changes on TCP.

This article takes one step further. We not only detected
failure and rerouted flows [51], but also identified the gap
when BFD integrates with MPTCP. For better observation of
network performance, we designed two metrics to measure the
L4 performance, and design fast failover mechanism to settle
link failure and achieve restoration.

VII. CONCLUSION

We have presented WaMPTCP, a novel SD-WAN solu-
tion for providing better resilience under WAN link fail-
ures. We motivated the design for WaMPTCP by illustrating
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the problems associated with ECMP and Tunnel Handoff
commonly employed by existing SD-WAN solutions to handle
WAN link failures, and showed that it can lead to signifi-
cant application performance degradation in the evaluation.
WaMPTCP enables applications to generate multiple MPTCP
flows even with a single physical interface. This is further aug-
mented with an MPTCP proxy to accommodate end systems
without native MPTCP support and integrated with tunnel
handoff to support UDP traffic. We also introduced two new
metrics to better capture and quantify the impact of WAN
link failures on application performance. Through extensive
evaluation in emulated testbed and real-world deployment, we
demonstrated the performance gain of WaMPTCP over exist-
ing SD-WAN solutions. WAN awareness enables MPTCP on
the client to optimally aggregate the bandwidth of all the WAN
links available on the gateway, in a scalable way. MPTCP dras-
tically reduces the impact of path failures, and Fast Recovery
drastically reduces the time take advantage of a recovered path.
While the focus of this article is on aggregating multiple WAN
links for providing better resilience under failures to minimize
their impact on application performance, WaMPTCP can also
be used to further enhance WAN link utilization by intelli-
gently distributing MPTCP subflows to WAN links and support
application-aware SD-WAN traffic engineering — an in-depth
exploration of these topics will be left to a future paper.
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